Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
National Journal of Andrology ; (12): 157-163, 2017.
Article in Chinese | WPRIM | ID: wpr-812793

ABSTRACT

Objective@#To study the effects of muskolibanum combination on the proliferation and differentiation of prostate stem cells.@*METHODS@#We cultured prostate epithelial cells and urogenital sinus mesenchymal (UGSM) cells from 7-10 d old C57BL/6 mice and 16-18 d old pregnant C57BL/6 mice, transplanted the mixed suspension of the two types of cells under the kidney envelope of SCIDCB.17 male mice, and harvested the transplants 30 days later. We randomly divided the SCIDCB.17 mice into four groups to be treated intragastrically with musk (n = 8), olibanum (n = 8), musk+olibanum (n = 7), and normal saline (blank control, n = 8)) respectively, all for 14 days. Then we collected the kidney tissue for observation of the morphology of the glandular tubes and differentiation of different subsets of stem cells by HE staining and determination of the expressions and distribution of P63, CD133, CD117 and Sca1 by immunohistochemistry and Western blot.@*RESULTS@#A system was successfully established for the isolation and mixed culture of Sca1 Lin+ CD49f+ (LSC) cells of prostate stem cells and UGSM cells of the mouse embryonic prostate. Immunohistochemistry showed positive expressions of P63, CD133, Sca1, and CD117 in the prostatic acinar epithelia and proved the presence of prostatic acinar epithelial structure in the transplants. Compared with the blank control group, the expressions of CD133, Sca1 and CD117 were significantly increased in the musk, olibanum, and musk+olibanum groups (P< 0.05), higher in the musk+olibanum than in the musk or olibanum group (P< 0.05), and their protein expressions were even more elevated in the musk+olibanum group (P< 0.01), with statistically significant difference from the olibanum group (P< 0.05).@*CONCLUSIONS@#The combination of musk and olibanum can improve the proliferation and differentiation of prostate stem cells.


Subject(s)
Animals , Female , Male , Mice , Pregnancy , Cell Differentiation , Cell Proliferation , Drug Therapy, Combination , Epithelial Cells , Cell Biology , Fatty Acids, Monounsaturated , Pharmacology , Frankincense , Pharmacology , Mesenchymal Stem Cells , Cell Biology , Mice, Inbred C57BL , Mice, SCID , Prostate , Cell Biology , Random Allocation , Receptor Protein-Tyrosine Kinases , Receptors, Cholinergic , Stem Cells , Cell Biology
2.
National Journal of Andrology ; (12): 256-262, 2015.
Article in Chinese | WPRIM | ID: wpr-319509

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of drug plasma of musk and olibanum (DP-M&O) on the release of inflammatory cytokines from monocytes and the expressions of the proteins associated with inflammation of prostatic or endothelial cells induced by prostate antigen (PAg) stimulation.</p><p><b>METHODS</b>We prepared DP-M&O using SD rats and monocytes and PAgs using BALB/c mice. We pre-treated the monocytes with DP-M&O at the gradient concentrations of 0, 2.5, 5, 10, and 20% for 1 hour, activated them with PAgs, and then cultured them for 96 hours, followed by detection of the release of inflammatory cytokines. We co-cultured the prostate RWPE-1 cells with the endothelial EA. hy926 cells, pre-treated them with the same gradient concentrations of DP-M&O as above for 1 hour, activated with PAgs, and cultured for 96 hours. Then we determined the expression levels of the proteins associated with inflammation of RWPE-1 and EA. hy926 cells by Western blot.</p><p><b>RESULTS</b>DP-M&O decreased the levels of TNF-alpha, IL-1beta, IL-6, and IL-8 and increased that of IL-10 in a concentration-dependent manner. Significant differences were found between the 20% P-M&O and PAg groups in the release of the inflammatory cytokines TNF-alpha (70.8 +/- 22.3 vs. 277.1 +/- 65.5, P < 0.01) , IL-113 (277.5 +/- 22.6 vs. 630.4 +/- 89.7, P <0.01), IL-6 (232.7 +/- 62.7 vs. 994.2 vs. 182.3, P < 0.01), IL-8 (227.3 +/- 79.2 vs. 769.3 +/- 284.1, P < 0.01), and IL-10 (640.2 +/- 201.2 vs. 271.1 +/- 55.8, P < 0.01). Compared with the PAg group, the 10 and 20% P-M&O groups showed remarkable decreases in the protein expression of MCP-1/CCL2 in the RWPE-1 cells (1.12 +/- 0.34 vs. 0.56 +/- 0.11 and 0.34 +/- 0.08) and that of VCAM-1 in the EA. hy926 cells (0.94 +/- 0.22 vs. 0.52 +/- 0.17 and 0.38 +/- 0.12) (P < 0.05 or 0.01).</p><p><b>CONCLUSION</b>The compatibility of musk and olibanum can decrease the expression of MCP-1/CCL2 in prostate cells and VCAM-1 in vascular endothelial cells, blocking the adhesion of leucocytes and suppressing inflammatory response.</p>


Subject(s)
Animals , Male , Mice , Rats , Blotting, Western , Cytokines , Metabolism , Endothelial Cells , Metabolism , Fatty Acids, Monounsaturated , Pharmacology , Frankincense , Pharmacology , Inflammation , Metabolism , Interleukin-10 , Metabolism , Interleukin-1beta , Metabolism , Interleukin-6 , Metabolism , Interleukin-8 , Mice, Inbred BALB C , Monocytes , Metabolism , Prostate , Cell Biology , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Metabolism , Vascular Cell Adhesion Molecule-1 , Metabolism
3.
National Journal of Andrology ; (12): 1110-1115, 2015.
Article in Chinese | WPRIM | ID: wpr-304765

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of the combination of musk and olibanum on the tight junction protein expressions in prostatic epithelial cells of normal and chronic prostatitis (CP) rats.</p><p><b>METHODS</b>Eighty male SD rats were randomly divided into 8 groups of equal number: normal control, normal musk, normal olibanum, normal musk + olibanum, CP model control, CP model musk, CP model olibanum, and CP model musk + olibanum. At 60 days after modeling, the rats in the control, musk, olibanum, and musk + olibanum groups were treated intragastrically with normal saline, musk (0.021 g per kg body weight per day), olibanum (1.05 g per kg body weight per day), or musk + olibanum respectively, all for 3 days. Then, all the rats were sacrificed and their prostate tissues harvested for detection of the expressions of the tight junction proteins Claudin-1, Claudin-3, Occludin, and ZO-1 in the prostatic epithelial cells by immunohistochemical staining.</p><p><b>RESULTS</b>In the CP models, only the expression of Claudin-1 was significantly increased. In the normal rats, the expression of Claudin-1 was remarkably upregulated after treated with musk (824.6 ± 393.3, P < 0.05), olibanum (982.0 ± 334.0, P < 0.05), and musk + olibanum (1088.1 ± 640.2, P < 0.01); that of Claudin-3 was elevated markedly by olibanum (1 009.5 ± 243.6, P < 0.05) and insignificantly by musk (597.5 ± 80.7), but the increasing effect of olibanum was reduced by musk + olibanum (678.4 ± 255.1). No statistically significant differences were found in the expression of Occludin among the rats treated with musk (693.0 ± 424.8), olibanum (732.1 ± 302.0), and musk + olibanum (560.2 ± 202.3), or in that of ZO-1 in the animals treated with musk (290.0 ± 166.8) and olibanum (419.7 ± 108.1), but the latter was markedly decreased in the musk + olibanum group (197.7 ± 98.2, P < 0.05). In the CP rat models, both the expressions of Claudin-1 (823.0 ± 100.1, P < 0.01) and Occludin (1160.0 ± 32.2, P < 0.05) were significantly increased. The expression of Claudin-1 was remarkably down-regulated by musk (764.9 ± 179.0), olibanum (468.4 ± 220.4), and musk + olibanum (335.1 ± 204.0) (all P < 0.05), but that of Claudin-3 up-regulated by musk (744.6 ± 94.5) and olibanum (700.1 ± 223.7) (both P < 0.05). The expression of Occludin was reduced by musk (615.0 ± 221.0), olibanum (749.6 ± 321.7), and musk + olibanum (505.8 ± 523.7), while that of ZO-1 increased by olibaum (443.2 ± 44.9) and decreased by musk + olibanum (213.5 ± 24.9, P < 0.05).</p><p><b>CONCLUSION</b>In physiological and pathological conditions, the combination of musk and olibanum acts on the expressions of tight junction proteins in prostate epithelial cells in a selective and dual-targeting manner, promoting their permeability by down-regulating the expression of ZO-1 and maintaining their structural stability by regulating the expressions of Claudin-1, Claudin-3, and Occludin.</p>


Subject(s)
Animals , Male , Rats , Claudins , Metabolism , Down-Regulation , Epithelial Cells , Fatty Acids, Monounsaturated , Chemistry , Frankincense , Chemistry , Occludin , Metabolism , Prostate , Cell Biology , Prostatitis , Rats, Sprague-Dawley , Tight Junction Proteins , Metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL